| Retrieval-Augmented Generation | 
RAG enhances traditional large language models
(LLMs) by allowing them to fetch external knowledge before generating
responses. 
RAG
operates in two main stages:
1. Retrieval Phase
·       When
a user queries the system, RAG retrieves relevant information from an external
knowledge base (e.g., a document database, vector store, or web search).
·       It
uses embedding-based search (e.g., cosine similarity with FAISS, ChromaDB) or
keyword-based search (e.g., BM25, Elasticsearch).
·       The
retrieved documents provide context for the next phase.
2. Generation Phase
·       The
retrieved documents are fed into the LLM (e.g., GPT-4, Llama, Mistral).
·       The
LLM generates a response based on both the retrieved documents and its internal
knowledge.
·       Vedio
Link https://youtu.be/FjUx4Wm3UxY?si=xxMk6H6BNRArA5uq
Key
Components of RAG
1. LLM (Large Language Model)
·       The
generative AI component that processes and produces responses.
·       Examples:
GPT-4, Llama 3, Mistral, Claude.
2. Retriever (Search System)
·       responsible
for fetching relevant documents.
·       Examples:
FAISS (Facebook AI Similarity Search), ChromaDB, Pinecone, Weaviate,
Elasticsearch.
3. Knowledge Base (Data Source)
·       Storage
of structured and unstructured data (PDFs, articles, databases).
4. Embedding Model
·       Converts
text into numerical vectors for similarity search.
·       Examples: OpenAI Embeddings, BERT, Sentence
Transformers.
5. Indexing & Vector Store
·       stores
document embeddings for fast retrieval.
·       Examples: FAISS, Milvus, ChromaDB, Pinecone.
6. Retrieval Strategy
·       Dense
Retrieval (Semantic Search)→ Uses embeddings.
·       Sparse
Retrieval (Lexical Search)→ Uses keywords.
·       Vedio
Link : https://youtu.be/eUY9i1CWmUg?si=IGI4Xm7Oz2JK99h4
Types
of RAG
1. RAG-Classic
·     
Fetch documents from a static
knowledge base.
·       Used
in question-answering systems.
2. RAG-Refine (Iterative RAG)
·       Reruns
retrieval dynamically during response generation.
·       Improves
factual consistency.
3. RAG-Augmented Fine-Tuning
·       LLM
is fine-tuned on retrieved data.
·       Reduces
dependency on external retrieval.
Advantages
of RAG
·       Better
Accuracy: Reduces hallucinations by grounding responses in factual data.
·       Up-to-date
Information: Can access the latest knowledge beyond the LLM’s training cut-off.
·       Scalability:
Works with large enterprise databases and dynamic content.
·       Interpretable
Responses: Can show retrieved sources for transparency.
Use
Cases of RAG
·       Enterprise
Chatbots (Customer Support, HR FAQs)
·       Legal
& Compliance (Document search, regulation tracking)
·       Healthcare
& Pharma (Medical literature retrieval)
·       Financial
Services (Market insights, fraud detection)
·       Education
& Research (Academic search engines)
·       Vedio
Lin: https://youtu.be/eUY9i1CWmUg?si=9fe3K9XSHexhsP5U
Popular
RAG Frameworks & Tools
·       LangChain
is a modular toolkit for building RAG pipelines.
·       LlamaIndex
(GPT Index): Optimized for document retrieval and indexing.
·       FAISS:
Fast similarity search by Meta AI.
·       ChromaDB
is an open-source vector database.
·       Pinecone:
a scalable managed vector database.
Challenges
in RAG
·       Retrieval
Quality: Irrelevant documents can degrade response quality.
·       Latency
Issues: Retrieving large documents can slow response times.
·       Storage
Costs: Maintaining vector databases requires infrastructure.
·       Security
& Privacy: Sensitive data exposure in retrieval systems.
Future of RAG
·       Hybrid
RAG: Combining dense (embedding-based) and sparse (keyword-based) retrieval for
better accuracy.
·       Memory-Augmented
RAG: systems that learn and adapt over time.
·       Multi-Modal
RAG: Combining text, images, audio, and video retrieval.
·       Real-Time
RAG: Instant web retrieval for the most up-to-date responses.
·       Vedio
Link : https://youtu.be/Cr4LpH5sfyE?si=9zEe-blNiEq9cN0Y
Retrieval Augmented Generation Retrieves relevant documents and generates a response in a single pass, ensuring dynamic knowledge updates without fine-tuning. Enhances RAG-Classic by iterating retrieval-generation steps and refining responses for improved accuracy and depth. Fine-tunes the model using retrieved data before inference, boosting performance for domain-specific tasksfull details create image
 
 
 
 
 
 
 
 
.webp) 
 
 
No comments:
Post a Comment