|  | 
| RAG pipeline using LangChain + FAISS + OpenAI GPT-4 | 
Here's a sample RAG pipeline using LangChain + FAISS + OpenAI GPT-4 for document-based retrieval and generation.
RAG Pipeline Implementation
(LangChain + FAISS + OpenAI)
1. Install Dependencies
First,
install the required Python libraries:
Bash
CopyEdit
pip
install langchain openai faiss-cpu chromadb pypdf tiktoken
2.
Set Up Environment Variables
You'll need an OpenAI API key to use GPT-4. Set it up in
your environment:
python
CopyEdit
import
os
os.environ["OPENAI_API_KEY"]
= "your_openai_api_key"
3.
Load and Chunk Documents
We will load PDF/text documents and
break them into smaller chunks for efficient retrieval.
python
CopyEdit
from
langchain.document_loaders import PyPDFLoader, TextLoader
from
langchain.text_splitter import RecursiveCharacterTextSplitter
#
Load Documents
loader
= PyPDFLoader("example.pdf")  #
Change to TextLoader("example.txt") for text files
documents
= loader.load()
#
Split Documents into Chunks
text_splitter
= RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
docs
= text_splitter.split_documents(documents)
print(f"Total
document chunks: {len(docs)}")
4.
Convert Text to Embeddings and Store in FAISS
We
use OpenAI's embedded model (text-embedding-ada-002) and store the vectors in FAISS.
python
CopyEdit
from
langchain.vectorstores import FAISS
from
langchain.embeddings.openai import OpenAIEmbeddings
Create Embeddings
embeddings
= OpenAIEmbeddings()
#
Store embeddings in FAISS
vector_store
= FAISS.from_documents(docs, embeddings)
#
Save FAISS Index
vector_store.save_local("faiss_index")
5. Load FAISS and Perform Retrieval
We will reload the FAISS index and
perform a similarity search.
python
CopyEdit
#
Load FAISS index
vector_store
= FAISS.load_local("faiss_index", embeddings)
#
Retrieve Top 3 Similar Documents
query
= "What is RAG AI?"
retrieved_docs
= vector_store.similarity_search(query, k=3)
for
i, doc in enumerate(retrieved_docs):
    print(f"\nDocument
{i+1}:\n{doc.page_content[:300]}...")
6. Use GPT-4 for Augmented Generation
We now pass the retrieved documents
as context to GPT-4 for a final response.
python
CopyEdit
from
langchain.chat_models import ChatOpenAI
from
langchain.chains import RetrievalQA
#
Initialize OpenAI GPT-4 Model
llm
= ChatOpenAI(model_name="gpt-4", temperature=0)
# Create
RAG Pipeline
qa_chain
= RetrievalQA.from_chain_type(
    llm=llm, chain_type="stuff",
retriever=vector_store.as_retriever()
)
#
Ask a Question
response
= qa_chain.run("Explain RAG in simple terms")
print("\nAI
Response:\n", response)
Vedio
Link:https://youtu.be/jgqe9dMeacQ?si=q5MuPxFqH3Sr3ZPB
How This Works
1. Load documents
(PDFs, text, etc.).
2.   
Split
into chunks
for better retrieval.
3. Convert chunks to embedded systems using OpenAI.
4. Store & index Embeddings
using FAISS.
5. Retrieve Relevant Chunks
using Similarity Search.
6. Feed retrieved data to GPT-4 for context-aware generation.
Vedio Link: https://youtu.be/44MsptcNzp4?si=fJR-Q4l0U3Sb6fFW
Next Steps & Optimizations
·     
Use
ChromaDB/Pinecone
instead of FAISS for scalable cloud-based retrieval.
·     
Implement
hybrid search
(combining BM25 + dense retrieval).
·     
Fine-tune
a custom LLM
for domain-specific applications.
·     
Streamline
for Real-time Retrieval
(Fetching fresh web data).
 
 
 
 
 
 
 
 
.webp) 
 
 
No comments:
Post a Comment